Physics Case for the Energy Frontier

Andrei Gritsan

Johns Hopkins University & CMS/LPC

April 4, 2013

Panel Discussion on the Energy Frontier Snowmass Energy Frontier Workshop

Brookhaven National Laboratory, Upton, NY

Why Pursue Energy Frontier

• First of all it is a cultural reason:

learn about the past 13.8 billion years

about where we are now

and where we are going...

Stay on the cutting edge

- of education
- of technology
- of fundamental scientific knowledge

Discovery of a Higgs Boson

- Discovery of a Higgs Boson
- absolutely new form of matter-energy
- consistent with fundamental $J^P=0^+$ scalar excitation of a vacuum field

- is it the only such a state?
- what does it tell us?
- where does it lead us?

- we knew where to look
- but a discovery was not guaranteed, also true for the next steps

The dark questions: What we do not see

- What is in the vacuum?
 - dark energy, 10^{120} too small?
 - $-\sim$ 70% of matter-energy balance
 - Higgs field, related to dark energy?
 - is vacuum (Higgs field) unstable?

- What is dark matter?
 - $-\sim$ 25% of matter-energy
 - is it a WIMP? does it interact with the Higgs field/boson?
- Where did antimatter go?
 - $-\sim\!0\%$
 - CP violation in the Higgs sector? anywhere else?
 - why is proton so stable?

The light questions: What we do see

- We do not understand (see) 95% of the Universe
- But even what we do see:
 - why is light (γ) so light? and does not see the Higgs field?
 - masses of fermions from <1 eV to $>10^{11} \text{ eV}$ are the Higgs field couplings random?
 - how do we keep the Higgs boson stable against large radiative corrections?
 - why is gravity so weak? $\sim \! 10^{32}$ weaker than the weak force do we understand the space-time? extra dimensions? how do we approach quantum gravity? are there gravitons?

Looking for answers

- With so many questions, we need answers
- Motivated models exist
 - but must confirm experimentally
- Implications for the Energy Frontier
 - Higgs boson is not alone
 - its properties affected
 - CP violation observable
 - dark matter candidate
 - many partner particles may be within reach (direct or indirect)
- The reach depends on the dial of Nature
 - the whole new view on the Universe may open up
 - we are very close to find out...

Two paths to reach

We have seen this

We are now guaranteed to have these

- Two paths to proceed
 - (1) precision measurements of new state of matter-energy (H)
 - (2) reaching higher in mass+sensitivity for other states (X)

5-10% precision on $(1) \Leftrightarrow$ few TeV mass reach (2)

We have the knowledge and technology

• LHC pp

- H-factory \sim 250 GeV
- ILC \sim 1 TeV

$$gg \to H$$

$$e^+e^- \rightarrow Z^* \rightarrow ZH$$

$$e^+e^-VV \to \ell\ell H$$

- With complementary approaches
 - guaranteed precision understanding of the Higgs boson
 - when new discoveries happen, use facilities for deep understanding

Frontier facilities

5-10% precision on (H) \Leftrightarrow few TeV mass reach (X)

- This is a model-dependent statement, we need BOTH
- Exciting opportunities:
 - (1) LHC pp at 14 TeV with further upgrade of lumi and possibly energy
 - (2) Linear e^+e^- with further upgrade of energy
 - (3) Circular e^+e^- with further upgrade to $pp \sim 100 \text{ TeV}$
 - (4, 5) Muon and photon colliders

• Discoveries may be at reach but not guaranteed we can guarantee (a) not to miss & (b) stay on the cutting edge

The other questions we face

- It all looks excellent, but
 - with limited support, where can we focus
- Questions to US community
 - join CERN for LHC lumi/energy upgrade (1)
 - join overseas e^+e^- machine (2)
 - have the next Energy Frontier facility in the US (3)
 - more than one (all) of the above
 - substitute Energy Frontier with "smaller alternatives"
- We have the Physics Case
 - make it sharp (Snowmass effort) and do the best we can...

Conclusion

- We have a very strong Physics Case for the Energy Frontier
- In my view, the biggest question to answer
 - Why did not we discover the Higgs boson at the SSC?

